首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85230篇
  免费   13786篇
  国内免费   7350篇
电工技术   10740篇
技术理论   4篇
综合类   8368篇
化学工业   10739篇
金属工艺   3911篇
机械仪表   7763篇
建筑科学   4214篇
矿业工程   2821篇
能源动力   4368篇
轻工业   4291篇
水利工程   2175篇
石油天然气   3212篇
武器工业   1194篇
无线电   7230篇
一般工业技术   9437篇
冶金工业   2469篇
原子能技术   846篇
自动化技术   22584篇
  2024年   315篇
  2023年   2022篇
  2022年   3441篇
  2021年   3877篇
  2020年   4228篇
  2019年   3696篇
  2018年   3340篇
  2017年   4047篇
  2016年   4363篇
  2015年   4727篇
  2014年   6414篇
  2013年   6618篇
  2012年   7170篇
  2011年   7339篇
  2010年   5180篇
  2009年   5340篇
  2008年   4827篇
  2007年   5434篇
  2006年   4509篇
  2005年   3711篇
  2004年   3011篇
  2003年   2377篇
  2002年   1972篇
  2001年   1634篇
  2000年   1286篇
  1999年   976篇
  1998年   803篇
  1997年   667篇
  1996年   549篇
  1995年   516篇
  1994年   412篇
  1993年   339篇
  1992年   268篇
  1991年   199篇
  1990年   179篇
  1989年   156篇
  1988年   91篇
  1987年   49篇
  1986年   36篇
  1985年   29篇
  1984年   27篇
  1983年   27篇
  1982年   32篇
  1981年   13篇
  1980年   27篇
  1979年   27篇
  1978年   9篇
  1975年   6篇
  1959年   15篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
11.
《Ceramics International》2022,48(6):7748-7758
Micromechanics model, finite element (FE) simulation of microindentation and machine learning were deployed to predict the mechanical properties of Cu–Al2O3 nanocomposites. The micromechanical model was developed based on the rule of mixture and grain and grain boundary sizes evolution to predict the elastic modulus of the produced nanocomposites. Then, a FE model was developed to simulate the microindentation test. The input for the FE model was the elastic modulus that was computed using the micromechanics model and wide range of yield and tangent stresses values. Finally, the output load-displacement response from the FE model, the elastic modulus, the yield and tangent strengths used for the FE simulations, and the residual indentation depth were used to train the machine learning model (Random vector functional link network) for the prediction of the yield and tangent stresses of the produced nanocomposites. Cu–Al2O3 nanocomposites with different Al2O3 concentration were manufactured using insitu chemical method to validate the proposed model. After training the model, the microindentation experimental load-displacement curve for Cu–Al2O3 nanocomposites was fed to the machine learning model and the mechanical properties were obtained. The obtained mechanical properties were in very good agreement with the experimental ones achieving 0.99 coefficient of determination R2 for the yield strength.  相似文献   
12.
支承或连接构件对梁结构的动力学性能有至关重要影响,必须保证其在振动过程中不发生破坏或者失效。通过合理设计和布局附加弹性支承可以实现对这些重要连接构件所承受约束反力的控制。应用微分变换法推导含附加支承的梁结构支承约束反力及其对于附加支承位置和刚度的灵敏度表达式,并通过优化设计附加支承位置和刚度实现具有弹性约束端的简支梁结构各支承约束反力的平衡,可提高结构的动力学性能。  相似文献   
13.
In lead optimization, protein crystallography is an indispensable tool to analyze drug binding. Binding modes and non-covalent interaction inventories are essential to design follow-up synthesis candidates. Two protocols are commonly applied to produce protein–ligand complexes: cocrystallization and soaking. Because of its time and cost effectiveness, soaking is the more popular method. Taking eight ligand hinge binders of protein kinase A, we demonstrate that cocrystallization is superior. Particularly for flexible proteins, such as kinases, and larger ligands cocrystallization captures more reliable the correct binding pose and induced protein adaptations. The geometrical discrepancies between soaking and cocrystallization appear smaller for fragment-sized ligands. For larger flexible ligands that trigger conformational changes of the protein, soaking can be misleading and underestimates the number of possible polar interactions due to inadequate, highly impaired positions of protein amino-acid side and main chain atoms. Thus, if applicable cocrystallization should be the gold standard to study protein–ligand complexes.  相似文献   
14.
Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells’ viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.  相似文献   
15.
The mathematical characterization of the texture component plays an instrumental role in image decomposition. In this paper, we are concerned with a low-rank texture prior based cartoon–texture image decomposition model, which utilizes a total variation norm and a global nuclear norm to characterize the cartoon and texture components, respectively. It is promising that our decomposition model is not only extremely simple, but also works perfectly for globally well-patterned images in the sense that the model can recover cleaner texture (or details) than the other novel models. Moreover, such a model can be easily reformulated as a separable convex optimization problem, thereby enjoying a splitting nature so that we can employ a partially parallel splitting method (PPSM) to solve it efficiently. A series of numerical experiments on image restoration demonstrate that PPSM can recover slightly higher quality images than some existing algorithms in terms of taking less iterations or computing time in many cases.  相似文献   
16.
以具有降解亚硝酸盐功能的植物乳杆菌(Lactobacillus plantarum)SD-7和具有优良抗氧化能力的植物乳杆菌(Lactobacillus plantarum)FM-LP-9为复合发酵剂(1∶1),采用浅渍法发酵豇豆。以硬度和感官评分为考察指标,通过单因素试验及响应面试验研究复合发酵剂接种量、发酵温度和发酵时间对浅渍法发酵豇豆品质的影响。结果表明,最佳发酵工艺条件为发酵温度25 ℃,接种量5%,发酵时间125 h,在此优化条件下,得到的浅渍法发酵豇豆硬度为47.31 N,感官评分为90.98分,香气浓郁、口感脆嫩。  相似文献   
17.
Under the circumstance of perceptual consumption, it is still challenging to grasp consumer's emotions and demands due to the large search space, diversified preferences, and easy fatigue of consumers. To reduce user fatigue and enlarge search space, a novel method was presented to design and optimize the pattern of yarn-dyed plaid fabric using the isolation niche genetic algorithm and rough set theory. Each pattern was encoded as a chromosome based on the real number code. The population was initialized and evolved using INGA to maintain the diversity. The rough set theory was adopted as the fitness function of isolation niche genetic algorithm to extract the consumer's demands. After multiple evolutions, a large set of practical patterns of the yarn-dyed plaid fabric are obtained. Experiments were carried out by 24 testers of different ages and genders. The results prove that the proposed method based on the isolation niche genetic algorithm and rough set theory is feasible and effective, supplying references to the designer.  相似文献   
18.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
19.
In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision-making is shown. Then state-of-the-art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI-ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.  相似文献   
20.
《Ceramics International》2022,48(17):25020-25033
Herein, we have developed a novel hybrid material based on NiCo2S4 (NCS), halloysite nanotubes (HNTs), and carbon as promising electrodes for supercapacitors (SCs). Firstly, mesoporous NCS nanoflakes were prepared by co-precipitation method followed by physically mixing with HNTs and carbon, and screen printed on nickel foam. After ultrasonication, a uniform distribution of the Carbon/HNTs complex was observed, which was confirmed by surface morphological analysis. When used as electrode material, the NCS/HNTs/C hybrid displayed a maximum specific capacity of 544 mAh g?1 at a scan rate of 5 mV s?1. Later, a solid-state hybrid SCs was fabricated using activated carbon (AC) as the negative and NCS/HNTs/C as the positive electrode (NCS/HNTs/C//AC). The device delivers a high energy density of 42.66 Wh kg?1 at a power density of 8.36 kW kg?1. In addition, the device demonstrates long-term cycling stability. Furthermore, the optimized NCS, NCS/HNTs, and NCS/HNTs/C nanocomposites also presented superior hydrogen evolution reaction (HER) performance of 201, 169, and 116 mV in the acidic bath at a current density of 10 mA cm?2, respectively. Thus, the synthesis of NCS/HNTs/C nanocomposite as positive electrodes for hybrid SCs opens new opportunities for the development of next-generation high energy density SCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号